Regulation and Competition with Captive Customers

John Vickers

Zeeman Lecture
RPI Annual Conference
Oxford, 24 September 2018

UK Regulatory Policy Issues

Privatization

Monopoly Regulation

Competition Policy

Consumer Policy

1988

1988

1988

Privatization An Ecomomic Analysis

John Vickers and George Yarrow

Jim Mirrlees (1936-2018)

Jim Mirrlees (1936-2018)

"I followed the main principle for academic success: get a good co-author (and also the second: get another)"

Regulatory Reform

Topics of recent work with Mark Armstrong

- Consumer protection and the incentive to become informed (with Jidong Zhou)
- Prominence and consumer search (ditto)
- Competitive nonlinear pricing and bundling
- A model of delegated project choice
- Consumer protection and contingent charges
- Which demand systems can be generated by discrete choice?
- Multiproduct pricing made simple
- Competition with captive customers

Competition With Captive Customers

Mark Armstrong \& John Vickers

Summer 2018

Introduction

- "Captive" customers only consider a particular seller; others consider several sellers and choose cheapest one
- Interpretations:
- consumers differ in awareness of sellers (Varian, Burdett \& Judd, etc.)
- horizontal differentiation, where only subset of consumers find a seller's product suitable
- chain stores face local competition in some locations but not others
- consumers differ in default bias or willingness to switch supplier
- consumers differ in ability to compare deals, and confused consumers buy randomly (Piccione \& Spiegler 2012, Chioveanu \& Zhou 2013)

Pricing regimes

- Uniform pricing:
- a seller must charge the same price to all its customers
- Bertrand competition typically involves mixed strategies (inter-firm price dispersion)
- Price discrimination:
- assumption is a seller knows whether a consumer is captive or not, and can price accordingly
- e.g., a customer who calls her existing supplier to say she's considering switching may be offered a "special discount", while inert consumers remain on the default tariff
- or chain store sets higher prices in markets with limited local competition
- Bertrand competition then involves pure strategies (but with intra-firm price dispersion)
- current policy issue is whether to ban this form of price discrimination in energy and related markets

Price dispersion online

Refine by Clear all

Shipping

- \quad prime
\square Free shipping

Condition

- NewRental
\square Used
Like NewVery GoodGoodAcceptable

The Theory of Industrial Organization (MIT Press) (Hardcover)
by Jean Tirole

Price + Shipping	Condition (Learn more)	Delivery
$\begin{aligned} & \$ 62.50 \\ & \text { \& FREE Shipping } \end{aligned}$	New	- Ships from FL, United States. - Shipping rates and return policy.
\$57.53 + \$4.99 shipping	New	- Arrives between March 2-23. - Ships from MI, United States. - Shipping rates and return policy.
$\begin{aligned} & \$ 72.00 \\ & +\$ 3.99 \text { shipping } \end{aligned}$	New	- Ships from MO, United States. - Shipping rates and return policy.
$\begin{aligned} & \$ 76.79 \\ & \text { \& FREE Shipping } \end{aligned}$	New	- Ships from MO, United States. - Shipping rates and return policy.

$\$ 76.80$	New	- Arrives between Feb. $26-$ Mar. 13.
\& FREE Shipping	- Ships from United Kingdom. Learn more about	
import fees and international shipping time.		

Price discrimination by energy firms in UK

Average tariff prices by supplier: Standard variable vs cheapest available tariffs (GB)

Supplier's average annual standard variable tariff
Supplier's cheapest annual average tariff — Market cheapest annual average tariff 位

A framework

- n sellers with costless production
- exogenous fraction of consumers consider the set $S \subset\{1, \ldots, n\}$ of sellers for their purchase
- consumer buys from seller she considers with the lowest price and has demand function $q(p)$, same for all consumers
- profit function $\pi(p) \equiv p q(p)$ single-peaked up to monopoly price p^{*}
- General features of equilibrium with uniform pricing:
- equilibrium exists (Dasgupta \& Maskin 1986)
- each firm's profit is at least equal to the number of its captive customers times $\pi\left(p^{*}\right)$
- if a price is sometimes chosen, at least two firms sometimes choose it
- there are no gaps in the set of prices sometimes chosen: if p_{0} is minimum price ever chosen, all prices $\left[p_{0}, p^{*}\right]$ are sometimes chosen
- duopoly is special: firms have same price support which is an interval

Particular patterns of awareness

- Duopoly [Narasimhan 1988]
- Consumers either know all sellers or one random seller [Varian 1980]
- Symmetric sellers [Burdett \& Judd 1983]
- Independent reach [Butters 1977, Ireland 1993, McAfee 1994]
- Nested reach:

Talk addresses two issues

- Price discrimination in duopoly
- Uniform pricing with more than two sellers

The impact of price discrimination

- Consider a duopoly market

symmetric reach

nested reach
- Left-hand picture has equal numbers of captives
- In right-hand picture the smaller seller has no captives
- e.g., smaller seller is an entrant who is able to serve those customers of the incumbent with low switching costs

The impact of price discrimination

- Price discrimination:
- contested consumers get competitive price $p=0$
- captive consumers get monopoly price $p=p^{*}$
- each seller obtains its captive profit
- Uniform pricing:
- both sellers choose price in interval $\left[p_{0}, p^{*}\right]$
- larger seller obtains its captive profit
- smaller seller obtains more than its captive profit
- Comparison:
- industry profit lower with discrimination (equal if market symmetric)
- distribution of profit across consumers is more dispersed with discrimination (a mean-preserving spread if market symmetric)
- a ban on discrimination helps captive customers and harms contested customers, but overall impact?

The impact of price discrimination

- Useful perspective is "expected utility theory"
- regard a consumer's surplus $v(\pi)$ as a (decreasing) function of the profit π she generates
- "competition in utility space" [Armstrong \& Vickers 2001]
- $v(\pi)$ is concave if elasticity $-p q^{\prime}(p) / q(p)$ increases with price
- unit demand $[q(p) \equiv 1$ if $p \leq 1]$ corresponds to "risk neutrality"
- In symmetric market, distribution of profit has same mean but greater dispersion with discrimination
- so consumers in aggregate are harmed by discrimination
- (they are indifferent with unit demand)
- In asymmetric market, distribution of profit has lower mean with discrimination
- so with unit demand consumers benefit from discrimination
- under mild conditions [eg., $q(p)$ log-concave] with nested configuration consumers benefit from discrimination

Uniform pricing with more sellers

- For simplicity assume unit demand $[q(p) \equiv 1$ if $p \leq 1]$
- makes little difference to equilibrium strategies, but makes welfare analysis [too] easy
- We describe a few interesting equilibria:
- independent reach
- nested reach
- "perverse" entry
- Then solve triopoly market

Independent reach

- Firm $i=1, \ldots, n$ is seen by independent fraction σ_{i} of consumers
- Ireland 1993, McAfee 1994
- Suppose firm j uses CDF $F_{j}(p)$ for its price
- firm i's demand with price p is

$$
\sigma_{i} \prod_{j \neq i}\left[1-\sigma_{j} F_{j}(p)\right]
$$

- if π_{i} is firm i 's profit, for a price in firm i's support we require

$$
p \times \sigma_{i} \prod_{j \neq i}\left[1-\sigma_{j} F_{j}(p)\right]=\pi_{i}
$$

- This system is easily solved:
- each firm chooses price from an interval
- all firms have the same minimum price p_{0}
- so profit of firm i is $\sigma_{i} \times p_{0}$
- maximum price is lower for firms with smaller σ_{i}

Independent reach

- Independent reach scenario is easy to analyze, despite asymmetry
- explicit formulas for industry profit, total welfare and consumer surplus
- e.g., if firm n is largest, consumer surplus in equilibrium is

$$
1-\left(1+\sum_{i=1}^{n-1} \sigma_{i}\right) \prod_{i=1}^{n-1}\left(1-\sigma_{i}\right)
$$

- [akin to the "Herfindahl index" in Cournot oligopoly]
- Consider entry by a new firm, also with independent reach
- expands total reach and so boosts total welfare
- reduces minimum price p_{0} and so impact on incumbents is negative
- necessarily boosts consumer surplus

Nested reach

- Radical departure from independence is nested reach
- a smaller firm's reach lies inside a larger firm's reach
- only the largest firm has any captive customers
- Example: $n \geq 3$ sellers with nested reach, where seller $i=1, \ldots, n$ reaches i consumers
- equilibrium takes the form of "overlapping duopoly"
- threshold prices $p_{1}<\ldots<p_{n-1}<p_{n}=1$ such that only firms 1 and 2 choose prices in $\left[p_{1}, p_{2}\right]$, only 2 and 3 choose prices in $\left[p_{2}, p_{3}\right], \ldots$, only firms $n-1$ and n choose prices in $\left[p_{n-1}, 1\right]$
- $p_{i+1}=p_{i}+p_{i-1}$, so threshold prices proportional to Fibonacci sequence
- profit of firm i is p_{i}
- small firms only choose low prices, large firms only choose high prices

"Perverse" impact of entry into contested market

- Suppose a third firm enters a symmetric duopoly market, which is considered only by the contested consumers
- a natural scenario if "savvy" consumers consider the entrant, and these are the consumers who already consider both incumbents
- The number of captives and total reach is unchanged
- minimum price p_{0} unchanged
- total profit rises and consumers in aggregate are harmed by entry
- captive consumers surely harmed, as entry induces incumbents to focus more on their captive consumers
- but even the contested consumers can be harmed

Triopoly

- Independent and nested cases have firms in obvious "order"
- firms with large reach also have high proportion of captive customers
- But, say, a "niche" firm might have limited reach and also a high proportion of captives
- General solution seems unavailable
- We have solved the model with triopoly
- solution depends on the seven parameters in the Venn diagram
- equilibria take just three forms

Triopoly

- Solution depends on the parameters:

$$
t_{i}=\operatorname{Pr}\{\text { see at least } i\} \times \operatorname{Pr}\{\text { see at least } j \text { and } k\}
$$

- with independent reach $t_{1}=t_{2}=t_{3}=\sigma_{1} \sigma_{2} \sigma_{3}$
- with nested reach largest firm has a larger t_{i} than other two
- If t_{i} close together equilibrium looks like independent case:
- "3 then 2": all firms have same minimum price, then one firm drops out
- If t_{i} moderately different:
- "3 then 2 then 2": all firms have same minimum price, one firm prices in the whole range, one firm only prices low, and one firm has disconnected support and does not choose intermediate prices
- If t_{i} far apart:
- "2 then 2 ", or overlapping duopoly: one firm prices throughout whole range, one firm only prices low, and one firm only prices high

Concluding themes

- Competitive outcomes depend not only on the number and sizes of firms, but also on the patterns of their interactions with customers
- Effects of entry may be non-standard
- Natural form of price discrimination induce "mean-preserving spread" in distribution of profit across consumers
- "Risk averse" consumers are then harmed if firms are symmetric (but not in general)

